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Abstract We have srudied the predinions of the canonical ensemble concerning the  upa at ion 
probability for a model with an infinite uniform ladder of degenerate levels. Results show that 
in the high-degeneracy or hightemperam limit. the canoNcal ensemble occupation probability 
would be the same as that under the grand canonical ensemble (piven by the Fermi-Dirac 
disuibntion). The difference between them is of the order of O(l/g) where g is the degeneracy 
of the levels. In the low-temperahwe limit this difference depends on the corresponding Fermi 
energy. If the number of electrons is such that the Fermi energy is equal to the energy of a 
highly degenerate level, then this difference is small. The "n difference o m  when the 
Fermi energy is in between two levels. These resalts are applicable to ID perfect mesoscopic 
rings. 

1. Introduction 

The microcanonical ensemble is applicable for systems with total energy and number of 
particles fixed, the canonical ensemble is applicable for systems with temperature and 
number of particles fixed, and the grand canonical ensemble is applicable for systems 
with temperature and chemical potential fixed. When applied to a macroscopic system the 
three ensembles yield the same occupation probability, i.e. the Fermi-Dirac distribution. 
Therefore one would expect the predicted physical properties of a macroscopic system to 
be the same, regardless of the ensemble used. This result does not necessarily apply to 
smaller systems at the mesoscopic scale. Denton et al  have^ studied the behaviour of small 
metal clusters using the canonical ensemble (Denton et al 1973). They found that there 
are quantitative differences between the results of the canonical and the grand canonical 
ensemble. Recent studies of magnetoresistance of mesoscopic systems (see, e.g., Sharvin 
and Sharvin 1981, Altshuler et al 1982, Webb et al 1985) have revealed that the properties 
of a system before and after ensemble averaging can he qualitatively different. Studies of 
persistent current of mesoscopic rings (see, e.g., Levy etal 1990, Bouchiat and Montambaux 
1989, Chandrasekhar et al 1991, Mailly et d 1993) have revealed that there are qualitative 
differences when averaging using different ensembles. The canonical ensemble must be 
used to predict the average persistent current in isolated mesoscopic rings. 

In deriving the occupation probability for a macroscopic system under the canoNcal 
ensemble, the result will be given by the Fermi-Dmc dishibution only if the singleparticle 
levels of the system occur together so that there are many .levels in a small energy range 
whenever they occur. This condition can be satisfied in the following two cases: (i) the 
levels are discrete but highly degenerate, or (ii) the levels form continuum hands with 
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or without energy gaps in between. For a macroscopic system it is generally true that 
the levels form bands with the energy spacings between the adjacent levels being of the 
order of the band width divided by the number of unit cells. Hence the energy spacings 
would be too small to produce any observable deviation from the occupation probability 
given by the Fermi-Dirac distribution since thermal fluctuation at reasonable temperatures 
would be sufficient to cause excitation to many levels above the Fermi surface, or any 
inelastic scattering would be sufficient to broaden the levels beyond the energy spacings. In 
both cases the spectrum behaves essentially like a continuous one. However the situation 
may be different for a mesoscopic system. If the system is sufficiently small, the energy 
spacings could be larger than both the energy of thermal fluctuation and the amount of 
level broadening caused by inelastic scattering. These two conditions may be satisfied in 
isolated mesoscopic systems. Then one may expect that the occupation probability would 
be significantly different from the Fermi-Dirac distribution. 

Suppose an isolated mesoscopic ring is built on an insulating substrate, would the 
number of elect” in the ring be fixed? On first thought it would seem that a mesoscopic 
ring could have a different number of electrons from time to time, even though it is isolated 
by an insulator. The reason is that since the energy level spacings are small, it would 
not cost too much energy to have extra electrons on the ring. However Schmid pointed 
out that the Coulomb charging energy of putting in one extra electron could make the 
process energetically unfavourable at low temperatures (Scbmid 1991). For example, the 
charging energy of a conductor is roughly equal to the square of the charge divided by 
the capacitance. In this way, the charging energy of putting in one more electron on a 
conductor of size 1 pm is estimated to be 10 K. So at lower temperatures the number of 
electrons should be considered fixed and thus the canonical ensemble should be used. An 
extreme example is provided by the electrons in a microscopic system such as an atom. 
Normally, ionized atoms are exhemely rare in comparison with the number of neutral atoms 
except at very high temperatures. Hence in describing the atom’s equilibrium properties 
or electronic transition processes at nearly equilibrium, the canonical ensemble should be 
used. The Fermi-Dirac distribution should not be used in this case since it would not be a 
good approximation for the electron occupation probability. 

In the following we discuss the occupation probability of a simple model under both 
the canonical ensemble and the grand canonical ensemble. The model is physically realistic 
and yet simple enough so that analytic results can be obtained. In this way some general 
properties of the occupation probability kom the two ensembles can be studied. In particular 
we would l i e  to know how good it would be if we approximate the canonical ensemble 
occupation probability by that from the grand canonical ensemble. 

Hui-Ping Chen and Ho-Fai Cheung 

2. The model 

The model we studied is a model of non-interacting electrons with single-particle energy 
levels that are uniformly spaced and of degeneracy g. This model has been analysed before 
(Denton ef al 1973). The model can be applied to onedimensional (1D) perfect rings or 
to fictitious crystals having very narrow energy bands separated by uniform band gaps. For 
1D perfect rings the energy levels may be approximated by a uniform ladder near the Fermi 
level. In the mesoscopic regime, the persistent current in such 1D perfect rings at non- 
zero temperahues has been calculated by using the grand canonical ensemble (Cheung er al 
1988). Even for this simple model, the persistent current at non-zero temperatures under the 
canonical ensemble has not been calculated because the occupation probability is not known 
exactly. In this paper we present in more details than in the previous studies the occupation 
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probability of the levels of the infinite uniform energy ladder model in the canonical 
ensemble for the cases of degeneracy g = 1 and g = 2. This two c a w  describe the physical 
situations where the spin degeneracy is lifted or not l i e d  respectively. We also present 
new results in the high-degeneracy limit at both high and low temperahueS. Comparison 
with the results of the grand canonical ensemble (Le. the Fermi-Dirac distribution) are also 
considered. 

Consider electrons in a semi-infinite uniformly spaced energy ladder with g-fold 
degenerate levels and energy spacing A. Let the number of electrons in the system be 
tixed at Ng - r where N and r are integers. Without loss of generality, r is restricted to 
lie between zero and g - 1. The canonical ensemble is used to calculate the occupation 
probability of the levels. First note that the ground state of the system (not the ground state 
of a single electron) consists of the k s t  ( N  - 1) levels filled up, g - r electrons in the 
Nth level, and the (N + 1)th levels onward empty. We divide the levels into two groups: 
(i) the levels starting from the Nth down to the k s t  are labelled with 0,1,2, . . . , N - 1 
respectively and they are called the lower levels; (ii) the levels from the ( N  + 1)th onward 
are labelled with 1,2,3, . . . ,ca and they are called the upper levels. We will specify a 
state by the number of holes in the lower levels and the number of electrons in the upper 
levels. In this way the ground state of the system consists of r holes at the uppermost 
lower level, no holes at the other lower levels, and no electrons at any upper levels. In the 
following we measure the energy of a level from that of the uppermost lower level. In this 
way the energy of a hole on the lower levels labelled with j is j A ,  and that the energy of 
an electron on the upper levels labelled with k is kA. We also measure the energy of the 
whole system from the system’s ground state energy. In this way the ground state energy 
is zero, and the energy of any excited state is equal to the sum of energy of electrons in the 
upper levels plus the sum of energy of holes in the lower levels. After this transformation, 
the upper limit of the label of the lower levels can be extended from (N - 1) to 00. 

Following the method used by Denton et a1 (1973) and originally discussed by Kubo 
(1962), the partition function can be written as 

where j3 is the inverse of the temperature with the Boltzmann factor, and z is an integration 
variable. The integration is over a contour on the complex z plane enclosing the point 
z = 0. The various terms can be understood as follows. Firstly the conhibution to the final 
Boltzmann factor of an upper level labelled with k is either unity or exp(-kpA) depending 
on whether there is no or one electron in that level. In the same way the contribution to 
the final Boltzmann factor of a lower level labelled with j is either unity or exp(-jpA) 
depending on whether there is no or one hole in that level. The various ways of putting 
electrons and holes in the levels lead to different Boltzmann factors which are completely 
summed up in the term n[l +exp(-jj3A)lg n[l +exp(-k@A)]S. Each [I +exp(-jj3A)] 
and [l +exp(-kj3A)] is raised to the gth power because all the levels are g-fold degenerate. 
The number of electron in the levels is counted via the power of z in [I + (z)exp(-kj3A)] 
and [I + (z-’) exp(-jpA)]. As the ground state of the system has r holes, the factor z‘ 
and the integration in z is used to pick up this term and all the other terms that have the 
same total number of electrons. 

Before considering the occupation probability, let us define the kth level as the level 
labelled by k and state that k takes a positive value for the upper levels and a negative value 
for the lower levels. When calculating the occupation probability of the kth level, we sum 
up the Boltrmann factor of all the states in which the kth level is definitely occupied. The 
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procedure is very similar to that for calculating the partition function, except now that the 
Boltzmann factor is for the kth level is (z) exp(-kpA) instead of [1+ (z) exp(-kpA)J. The 
occupation probability of the kth level is equal to the above s u m  divided by the partition 
function, and can be written as 

Hui-Ping Chen and Ho-Fai Cheung 

After substituting z by exp(i$) and exp(-pA/2) by q. the partition function can be written 
as 

The infinite product in (3) can be simplified using the following identity (Whittaker and 
Watson 1935): 
m m m 

(4) 
n=-m 

Then the integration over $ can be done readily and the partition function is obtained as 

where 

The integral for the occupation probability (2) can be simplified in the same way. We 
obtained 

This is the basic equation for the occupation probability. We will present results for the 
g = 1 and g = 2 cases in the next section, and then high- and low-temperature results in 
later sections. Before we do that we first discuss symmetries in the system. 

There is particlehole symmetry and ‘translational’ symmehy of the energy ladder. We 
find that these symmetries are reflected in the occupation probability. Under a mapping that 
tums the energy ladder upside down and then transforms particles into holes and holes into 
particles, the occupation probability of the levels after the mapping should be equal to the 
probability of putting a hole into the corresponding levels before the mapping. This is one 
example of the particlehole symmetry and it manifests itself by the relationship 

P ( k , r ) =  1-P(1-k,-r) .  (8) 
Thns once the occupation probability for positive k is known, the occupation probability 
for negative k can be deduced from (8). Another symmetry is the ‘translational‘ symmetry 
of the energy ladder: adding g holes to the system is equivalent to shifting the ladder 
downward by one step. This symmetry manifests itself by the relationship 

(9) P(k ,  r )  = P(k  - 1, r + g) .  
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3. Results 

We present results for the g = 1 and 2 cases. The occupation probability obtained from 
the canonical ensemble ( P ( k ) )  and that from the grand canonical ensemble (Pm(k) )  will 
be compared. The objective is to find out how well the canonical ensemble occupation 
probability is approximated by the Fermi-Dirac distribution. To evaluate Pm(k) we choose 
the chemical potential (p) in such a way that the average number of electrons in the grand 
canonical ensemble is equal to the number of electrons fixed in the canonical ensemble. 
This can be achieved by requiring that on average there are r more holes in the lower levels 
than electrons in the upper levels, i.e. 

From this equation the corresponding chemical potential ( p )  can be deduced. Note that 
normally the chemical potential would depend on temperature. However for the special 
cases where r is equal to zero or g j2  (the uppermost lower level is half filled or completely 
filled in the ground state of the system), the chemical potential turns out to be independent 
of temperature. 

Considering the g = 1 case (non-degenerate levels), the occupation probability obtained 
from the'canonical ensemble was found by setting g to unity in (7). The result is 

(11) 
P ( k )  is evaluated numerically from (11). When evaluating Pm(k), the chemical potential 
is obtained from (10) as (-r + ;)A. Putting these together, 

(12) Pm(k) = l/(exp[(k + r  - $)BA] + 1). 

Changing r is equivalent to shifting the energy ladder, as described by (9). Without loss 
of generality we can set r to zero. Results for P ( k )  and PFD(k) given by (11) and (12) 
are shown as a function of temperature in figure 1. The graphs are plotted as a function 
of exp[-p(Ek - p)], which is equal to exp[-(k - +)BA] in this case. The advantage is 
that the graphs for all Pm(k) fall into a single line. From figure 1, we notice that P ( k )  
approaches %(k) as k increases. 

The results for the doubly degenerate case follow. Setting g to two in equation (7), the 
occupation probability in the canonical ensemble is obtained as 

When there is no extra hole in the system (r = 0), the chemical potential is obtained from 
equation (10) as A/2. The corresponding occupation probability Pm(k) is the same as that 
given by (12) with r set to zero. Results for P(k)  and Pm(k) are shown in figure 2. We 
notice that as k increases, P(k)  approaches Pm(k). This feature is similar to that in the 
g = 1 case. We also notice another feature, that, for the same k, P ( k )  is closer to Pm(k) 
in the g = 2 case than in the g = 1 case. The difference between P(k)  and Pm(k) seems 
to scale as l/g. 
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~ P l - m % - * ~ l  

Figure 1. The occupation probabiliy ofthe k = 1,Z. 4 and 8 levels obtained from the canonical 
ensemble and that from the Fermi-Dkc distribution as a function of exp[-p(& - d l  for the 
case g = 1 and r = O .  

._ eXP[-P(+-dl 

Figure 2. The occupation probabiliry of the k = 1,2,4 and 8 levels obwined from the wnonical 
ensemble and that f" the Fermi-Dirac dishibution as a function of expl-fl(Ex - A I  for the 
ease g = 2  and r = 0. 

When there is one extra hole in the system (r = l), the chemical potential is obtained 
from equation (10) as zero. The occupation probability is obtained as 

P F D ( ~ )  = I/[exp(kSA) + 11. (14) 
Results for P ( k )  and Pm(k) are shown in figure 3. The abovementioned features are also 
present in this case. One additional feature is that P(k) is closer to Pm(k)  in the r = 1 m e  
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0 - 0.20 0.40 c ~ P l - m - " l l  0.60 0.80 1.00 

Figure 3. The occupation probability of the k = 1,2.4 and 8 levels obtained from the canonical 
ensemble a d  that f" the Fermi-Dim distribution as a function of exp[-p(Ek - p)I for the 
case g = 2 and I = 1. 

than in the r = 0 case. P ( k )  and Pm(k) are closer to each other when the Fermi energy 
(chemical potential at T = 0) is equal to the energy of a level. This happens for the g = 2, 
r = 1 case. This point will be discussed in relation to the low-temperature behaviour in 
section 5. 

From the above result, we expected that the difference between P ( k )  and Pm(k)  would 
scale as I/g in general. To test this prediction we have worked out the solution of a two- 
level model with degeneracy g. We found that the leading correction to the Fermi-Dirac 
distribution does scale as l/g as g approaches infinity. In the following two sections we 
will present similar analysis for the infinite energy ladder model introduced in section 2. 

4. The high-temperature behaviour 

In this section we look at the high-temperature behaviour of P ( k )  and Pm(k)  for general 
degeneracy. The major objectives are to study P ( k )  and Pm(k)  at high temperatures and 
also in the high-degeneracy limit. Starting from equations (5) and (7). P ( k )  can be written 
as 
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At high temperatures when BA << 1, the sums over the ni can be replaced by integrals 
(corresponds to using the leading term in the Poisson summation formula). This will 
introduce an error which is of the order of exp[-x2/pA] multiplied by the leading term. 
After integrating out all the ni, P(k)  is obtained as 

p(k )  = C(-i)m+le-BAm(r;-1/2t~/g)e-(8A/2g)m’ (16) 

Hui-Ping Chen and Ho-Fai Cheung 

m 

m=I 

Let us compare P ( k )  in (16) with Pm(k). Pm(k) follows the Fermi-Dmc distribution 
with the chemical potential deduced from (10). The chemical potential at high temperatures, 
when BA << 1, is obtained as 

Neglecting the exponentially small terms in equation (17). P&) can be written as 

Results from figures 1-3 for the g = 1 and g = 2 cases have already shown that Pm(k) is 
always larger than P ( k ) .  Let us concentrate on the difference between P ( k )  and Pm(k) at 
high temperatures. Define AP(k)  as Pm(k) - P f i )  and from equations (16) and (IS), we 
obtain 

Expanding the last term in (19) as a Taylor series, and evaluating the s u m  over m by the 
Poisson summation formula, we obtain 

At high temperatures only the n = 1 term is important. The other terms are at least pA/g 
times smaller. After integrating over x ,  AP(k) is obtained as 

For low-lying levels such that pA(k - $ + r / g )  << 1, Pm(k) is roughly equal to f and we 
find 

A W )  = I(BA)2/16gl(k - 1 +r/g)[l +oCsA/g)l. (22) 
Hence the ratio of AP(k) to h ( k )  is roughly equal to [(BA)*/Sg](k - $+r /g ) ,  which is 
much smaller than unity in this limit. For higher-lying levels such that j3A(k-$+r/g) >> 1, 
Pm(k) is roughly equal to exp[-@A/2)(k - f + r /g)]  and from (21) we find that 

AP(k) = (BA/2g)e-sAc~-’/2+r/~)[l + O(pA/g)J. (23) 
Hence the ratio of AP(k) to PED@) is roughly ,9A/2g, which is again much smaller than 

The above analysis reveals that AP(k) vanishes in the high-temperature limit. For 
lower-lying levels such that P(k) is close to 1 the percentage difference between P(k)  

larger for higher k values if temperature is fixed. However this does not contradict the data 

unity. 

and h ( k )  is small and is of the order of (BA) Y k / g .  The percentage difference is actually 
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in figures 1-3, where P ( k )  is plotted as afunction of exp[-p(Ek-p)]. Since EX = kA and 
p i A, the percentage difference between P(k)  and Pm(k) is roughly (p (kA - p))z /kg .  
This result indicates that the percentage difference between P ( k )  and Pm(k) scales roughly 
as l/k when exp[-p(Ek - p ) ]  is fixed, which c o n h s  the data shown in figures 1-3. 

For high-lying levels such that P(k)  is close to zero, the percentage difference between 
P(k)  and Pm(k) is small and of the order of pA/g. Since pA/g is roughly equal to 
@(kA - p) ) /kg ,  the percentage deerence between P(k)  and Pm(k) scales roughly as 
l /k  when exp[-p(Ek - p)] is fixed, which again confirms the data shown in figures 1- 
3. From this and the above analysis, the percentage difference between P(k)  and Pp~(k) 
scales as l/g for any level. We expect that this behaviour holds in general, both for the 
low-temperature case and also for cases where the levels are not uniformly spaced. 

5. The low-temperature behaviour 

The analysis in section 4 is for the high-temperature limit when @A << 1. However it seems 
the difference between the P(k)  and Pm(k) still scales as l /g  at low temperatures in the 
high-degeneracy limit We study thii in this section. 

At low temperatures, by considering the relevant lowest excited states, the partition 
function and the occupation probability can be expanded in powers of exp(-pA) as in the 
following: 

z = [g!/(g - r)!r!][~ +o(e-@')l 

When comparing P(k)  in (24) to that in the grand canonical ensemble, one needs the 
chemical potential, which is deduced from equation (10). At low temperatures when 
pA >> 1, the chemical potential p for the r # 0 case is 

p = (~ /p ) [~n( (g  - r ) / r )  + fg3(2r - g) / r* (g  - r)*]e-@' + . . .I (25) 
while for the r = 0 case, p is obtained as A/2. Hence the occupation probability for the 
r # 0 case in the grand canonical ensemble at low temperatures can be written as 

~ m ( k )  = [(g - r)/r~e-~@'[l+ 0(e+')1. (26) 
Comparing Pm(k) in (26) to P(k)  in (24), one notices that they are equal in the large g 
and r l i t .  This trend agrees with the data shown in figures 2 and 3. The large g and 
r limit corresponds to the case where the Fermi energy (chemical potential at T = 0) is 
equal to the energy of a highly degenerate level. The maxim? difference between P ( k )  
and &(k) occurs when the Fermi energy is in between two levels (i.e. the r = 0 case), 
where the occupation probability is obtained as 

In the extremely low-temperature limit when exp(pA/2) >> g, Pm(k) is many times larger 
than P ( k )  although they are both very close to zero. However the percentage difference 
between P ( k )  and Pm(k) will decrease rapidly in the large-g l i t  when temperam 
increases. At intermediate temperatures when exp(pA/Z) < g, the percentage difference 
between P(k)  and Pm(k) is small and scales as l/g. At still higher temperatures the results 
in section 4 will hold. 
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6. Discussion 

Our analysis reveals that within the model that we have discussed, the approximation of 
the occupation probability in the canonical ensemble by that from a suitably chosen Fcrmi- 
Dirac distribution is appropriate in the high-degeneracy limit or the high-temperature l i t .  
This approximation does not hold in the l i t  when both g and T are low. When this 
happens, there can be signi6cant differences between the two. These differences wiU be 
small if the number of electrons is such that the corresponding Fermi energy is equal to 
the energy of a highly degenerate level (for example when both g and r are large). The 
maximum difference occurs when the corresponding Fermi energy is in between two levels 
(i.e. the r = 0 case). when applying to a system with non-uniform energy spacing (typical 
energy spacing A), our conclusion should still be valid. 

As mentioned before in section 2 the energy levels in 1D perfect rings can be 
approximated by an inlinite uniform energy ladder. Using the results on the occupation 
probability obtained in this paper, it becomes possible to deduce the persistent current on 
1D perfect rings averaged under the canonical ensemble. 
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